☂️ Diketahui Persamaan Matriks 1 3 2 5

Diketahuimatriks A=(3 2 0 5) dan B=(-3 -1 -17 0). Jika A^T transpos matriks A dan AX=B+A^T, determinan matriks X adalah. Determinan Matriks ordo 2x2; Operasi Pada Matriks maka didapatkan yaitu adalah 1 per 3 kemudian minus 2 per 1500 dan 1 per 5 kemudian kita masukkan kembali ke dalam persamaan ya maka matriks X adalah invers nya UN2011 PAKET 12 Diketahui persamaan matriks 5 2 2 1 1 0 Diketahui persamaan 2 3 x 1 21 8 00 1 3 R1 +(5/4)R3 R2 - (1/2)R3 Dari matriks augmented terakhir, diperoleh x 1 = 1, x 2 = 2, x 3 = 3 Matriks eselon baris tereduksi. Diperoleh persamaan-persamaan berikut: x 1 -x 3 = 0 →x 1 = x 3 x 2 + x 3 = 0 →x 2 = -x 3 x 4 = 0 Misalkan x 3 = t, maka solusi SPL adalah x 1 = t, x 2 = -t, x 3 = t, x Diketahuimatriks A = [ 6 2 x − y x − 2 y − 1 ] dan B = [ 6 8 7 − 1 ] .Jika A = B T b. tentukan nilai 3 x − 4 y . 775. 4.3. Jawaban terverifikasi Hitunglah nilai dari masing-masing huruf pada persamaan matriks berikut. 2 ( 1 0 4 3 ) + ( 1 − 1 2 3 ) ( 2 5 4 − 4 ) = ( a c b d ) 161. 0.0. Jawaban terverifikasi Diketahuisistem persamaan linear x+y-z=-3 x+2y+2z=7 2x+y+z=4 Nilai dari x+y+z=. X dan y nya salah satu persamaan jadi saya pilih persamaan yang pertama maka X yaitu min 1 ditambah 2 dikurangi Z = min 3 min 1 + 2 itu 1 dikurangi Z = min 3 kemudian Min Z = min 3 1 nya banyak ruas kanan jadi min 1 min 3 min 1 Min 4 maka zakatnya adalah Padasoal diketahui PK: dengan a = 2, b = -6, dan c = -p x1 - x2 = 5, maka: 100=36+8p 100 - 36 = 8p 8p = 64 P = 64 : 8 P = 8 Jawaban: E (-3)/2 = 3/2 a . b = c/a = -5/2 persamaan kuadrat baru yang akar-akarnya -1/a dan -1/b adalah: Jawaban: D 4. Persamaan mempunyai akar real sama, maka nilai p sama dengan Matriks Cara mudah menentukan nilai X dari determinan suatu matriks - YouTube. tentukan nilai x dan y jika diketahui persamaan matriks berikut. a. (6 3-x)= (6 y ) (y+1 - Brainly.co.id. Berikut tentukan nilai x, y, dan z dari sistem persamaan linear tiga variabel berikut! x + 2y - z = 3 - Mas Dayat. Kelompok1. 3 porsi rawon dan 4 gelas es degan = Rp82.000. 3x + 4y = 82.000. Kelompok 2. 5 porsi rawon dan 3 gelas es degan = Rp122.000. 5x + 3y = 122.000. Setelah mendapatkan bentuk persamaan linearnya, ubahlah persamaan tersebut dalam bentuk matriks 2 x 2. Berdasarkan rumus diperoleh: Dari perhitungan di atas, diperoleh x = 22.000 dan y = 4. DiketahuiPersamaan Matriks 1 3 2 5 Persamaan Matriks - ialah merupakan suatu kumpulan pada bilangan yang telah disusun dengan berdasarkan baris dan juga pada kolomnya, pada bilangan yang ada matriks tersebut dengan cara elemen matriks. Pada elemen matriks ini dapat disusun secara vertikal (kolom) maupun dengan cara horizontal (baris). v8t6rk. Adik-adik.. apa yang kalian bayangkan ketika mendengar kata matriks? Kalian keinget sama sebuah film berjudul "the matriks" ya? hehe... tapi hari ini, kita mau belajar matriks bukan yang di film itu. Yuk... dicek contoh soal di bawah iniOh iya, mulai sekarang kalian bisa belajar bareng ajar hitung lewat media video lho... materi ini juga bisa kalian lihat di chanel youtube ajar hitung ya.. silahkan klik link video di bawah ini ya jika kalian tertarik... 1. Diketahui matriks . Nilai determinan dari matriks AB – C adalah ...a. -7b. -5c. 2d. 3e. 12Pembahasan Det AB – C = – = 12 – 9 = 3Jawaban D 2. Diketahui matriks , invers matriks AB adalah ... Pembahasan Jawaban A 3. Matriks X yang memenuhi adalah ... Pembahasan Jawaban C 4. Jika maka Det AB + C = ...a. -8b. -6c. -2d. 6e. 8Pembahasan DetAB + C = – = 42 – 48 = -6Jawaban B 5. Diketahui matriks Nilai x + y adalah ...a. 2b. 6c. 8d. 10e. 12Pembahasan 2x – 2 = 10 2x = 12 x = 6 9 – 2y = 5 -2y = -4 y = 2 Nilai x + y = 6 + 2 = 8Jawaban C 6. Matriks A = mempunyai hubungan dengan matriks B = . Jika matriks C = dan matriks D mempunyai hubungan yang serupa seperti A dengan B, maka matriks C + D adalah ... PembahasanHubungan matriks A dan B adalah Sehingga jika C = dan memiliki hubungan yang sama seperti A dan B dengan D, maka matriks D adalah Jadi, nilai C + D = + = Jawaban D 7. Jika matriks tidak mempunyai invers, maka nilai x adalah ...a. -2b. -1c. 0d. 1e. 2PembahasanSuatu matriks tidak memiliki invers jika determinan matriks tersebut adalah 0Det A = 02x + 1 5 – 6x – 13 = 010x + 5 – 18x – 3 = 010x + 5 – 18x + 3 = 0-8x + 8 = 0-8x = -8x = 1Jawaban D 8. At adalah transpose dari A. Jika maka determinan dari matriks At B adalah ...a. -196b. -188c. 188d. 196e. 21Pembahasan DetAt B = – = 340 – 144 = 196Jawaban D 9. Diketahui matriks-matriks . Jika matriks C = maka determinan matriks C adalah ...a. -66b. -98c. 80d. 85e. 98Pembahasan DetC = – = -66 – 32 = -98Jawaban B 10. Jika M adalah matriks sehingga maka determinan matriks M adalah ...a. -2b. -1c. 0d. 1e. 2Pembahasan DetM = – = -1 – 0 = -1Jawaban B 11. Jika maka x + y adalah ...a. – 15/4b. – 9/4c. 9/4d. 15/4e. 5/4Pembahasan3x – 2 = 73x = 9x = 3 2x + 4y = 3 2 3 + 4y = 3 6 + 4y = 3 4y = -3 y = - ¾ maka x + y = 3 – ¾ = 12/4 – ¾ = 9/4 Jawaban C 12. Diketahui matriks maka nilai x + 2xy + y adalah ...a. 8b. 12c. 18d. 20e. 22Pembahasan 3 + x +3 = 8 6 + x = 8 x = 2 5 – 3 – y = -x 2 – y = -2 -y = -4 y = 4maka nilai x + 2xy + y = 2 + + 4 = 2 + 16 + 4 = 22Jawaban E 13. Jika dan alpha suatu konstanta maka x + y = ... a. -2 b. -1 c. 0 d. 1 e. 2 Pembahasan x = 1 dan y = 0 Nilai x + y = 1 + 0 = 1 Jawaban D 14. Nilai p yang memenuhi persamaan matriks adalah ... a. -2 b. -1 c. 0 d. 1 e. 2 Pembahasan 2 + 2p = -2 2p = -4 p = -2 Jawaban A 15. Persamaan garis g dan garis h berturut-turut adalah Garis g dan garis h berpotongan di titik A, titik B p, 1 terletak pada g, dan titik C 2, q terletak pada garis h. Persamaan garis k yang melalui A dan sejajar BC adalah ... Pembahasan Garis g = Garis g = y – x = 0 atau –x + y = 0 Garis h = Garis h = x + y – 1 = 0 atau x + y = 1 Garis g dan h berpotongan di titik A, maka koordinat titik A adalah subtitusikan x = ½ dalam persamaan x + y = 1 x + y = 1 ½ + y = 1 y = ½ titik A ½ , ½ titik B p, 1 terletak pada g, maka –p + 1 = 0 p = 1 titik B 1, 1 titik C 2, q terletak pada garis h, maka 2 + q = 1 q = -1 Titik C 2, -1 Persamaan garis BC yang melalui titik B 1, 1 dan C 2, -1 adalah y – 1 = -2x + 2 2x + y = 3 atau y = – 2x + 3, maka gradien garis BC = -2 Maka, persamaan garis k adalah m = -2 karena sejajar dengan BC, melalui titik A ½ , ½ y – y1 = m x – x1 y – ½ = -2 x – ½ y = -2x + 1 + ½ y = -2x + 1 1/2 Jawaban E 16. jika maka P = ... Pembahasan Jawaban E 17. Jika P dan Q adalah matriks berordo 2 x 2 yang memenuhi adalah... Pembahasan Jawaban E 18. Jika jika determinan A dan determinan B sama, maka harga x yang memenuhi adalah ... a. 3 atau 4 b. -3 atau -4 c. 3 atau -4 d. -4 atau -5 e. 3 atau -5 Pembahasan DetA = 5 + x 3x – 5x = DetB = – 7.-x = 36 + 7x DetA = detB 3x – 9 x + 4 = 0 x = 3 atau x = -4 Jawaban C 19. Hasil kali semua nilai x sehingga matriks tidak mempunyai invers adalah ...a. 20b. -10c. 10d. -20e. 9PembahasanSyarat suatu matriks tidak memiliki invers adalah jika determinan = 0, maka x1 . x2 . x3 = -d/a = -20/1 = -20Jawaban D 20. Dua garis dalam persamaan matriks Saling tegak lurus jika a b = ...a. -6 1b. -3 2c. 1 1d. 2 3e. 1 2PembahasanGaris g = -2x + ay = 4Garis h = bx + 3y = 12mg = 2/amh = -b/3karena g dan h saling tegak lurus, maka mg x mh = -1, maka2/a . –b/3 = -1-2b/3a = -12b/3a = 13a = 2bSehingga a b= 2 3Jawaban D 21. Matriks jika A + Bt = C dan Bt adalah transpose dari B, maka d = ...a. -1b. -2c. 0d. 1e. 2Pembahasan A + Bt = Ca = 1b =1a+b-c =01 + 1 – c = 02 – c = 0c = 2c + d = 12 + d = 1d = -1Jawaban A 22. Jika maka p + q + r + s = ...a. -5b. -4c. 3d. 4e. 5Pembahasan3 + p = 1p = -2-1 + q = 0q = 1r = 05 + s = 1s = -4p + q + r + s = -2 + 1 + 0 – 4 = -5Jawaban A 23. Diketahui dan determinan dari adalah K. Jika garis 2x – y = 5 dan x + y = 1 berpotongan di A, maka persamaan garis yang melalui A dan bergradien K adalah ...a. x – 12y + 25= 0b. y – 12x + 25= 0c. x + 12y + 11= 0d. y – 12x - 11= 0e. y – 12x + 11= 0PembahasanK = detBC = – = 12 – 0 = 12Kita cari titik Asubtitusikan x = 2 dalam persamaan x + y = 1x + y = 12 + y = 1y = -1Titik A 2, -1Persamaan garis bergradien k dan melalui titik A adalahy – y1 = m x – x1y + 1 = 12 x – 2y + 1 = 12x – 24y – 12x = -25 atau y – 12x + 25 = 0Jawaban B 24. Jika M matriks berordo 2 x 2 dan maka matriks M2 adalah ...Pembahasan Jawaban C 25. Jika matriks adalah matriks ... PembahasanJawaban E Kelas 11 SMAMatriksOperasi pada MatriksDiketahui matriks A=3 -1 2 -5 dan A^2-xA=yI, dengan x dan y e bilangan real serta I matriks identitas berordo 2x2. Nilai x+y sama dengan ....Operasi pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0154Hasil dari A^2-2A untuk A 2 -1 3 0 adalah ..0313Jika bilangan real a, b, dan c memenuhi persamaan a1 0 1...01132 -1 3 0+-3 1 2 -3= ...0208-3 5 2 0 1 4-3 4 2 0 0 5+1 -5 2 3 -6 0=....Teks videoJika kita mendapatkan soal seperti ini maka cara penyelesaiannya adalah kita harus mengetahui matriks identitas untuk matriks identitas dapat kita tulis sebagai ini memiliki matriks yaitu 1001. Nah ini adalah matriks identitas yang ordonya 2 * 2 lalu kita harus tahu sifat dari matriks A Salah satu sifat dari matriks ketika terdapat konstanta dikalikan dengan sebuah matriks A akan menjadi misalkan kita disini mempunyai konstanta yaitu Kak matriks A adalah a b c d, maka akan sama dengan menjadi matriks k k b k c k d. Selanjutnya kita ingat kembali perkalian dari matriks ketika terdapat matriks A yang ordonya m * nDikalikan dengan matriks B yang ordonya n * s akan memiliki matriks c yang ordonya m * s. Misal disini kita memiliki matriks yang ordonya 2 * 1. Jika ditulis misalkan matriks A adalah a. B ini matriks yang ordonya 2 * 1 lalu dikalikan dengan matriks B yang ordonya satu kali dua yaitu di mana memiliki 1 baris dengan kolom nya hanya ada dua dituliskan seperti ini yaitu c d, maka akan didapatkan matriks barunya adalah untuk mendapatkan baris 1 kolom 1 di sini berarti kita akan mengalihkan baris satu ini dengan kolom satu ini yaitu berarti a dikali C lalu untuk mendapatkan baris 1 kolom 2 di sini kita kalikan yaitu baris 1Dengan kolom 2 berarti a x D lalu untuk mendapatkan baris 2 kolom 1 berarti kita kalikan dengan baris dengan kolom 1 maka dituliskan b * c lalu untuk mendapatkan baris 2 kolom 2 kita dapatkan dari baris 2 yang dikalikan dengan kolom 2 sehingga ditulis b. * d. Maka inilah persamaan baru matriksnya selanjutnya kita lihat pada soal terdapat matriks A yang memiliki matriks 3 - 12 - 5 dengan ordo 2 * 2 laluterdapat sebuah persamaan yaitu a kuadrat dikurang x a = y maksudnya disini adalah matriks A dikuadratkan dikurang dengan matriks A yang dikalikan dengan x = matriks identitas yang dikalikan dengan y dikatakan bahwa X dan Y elemen dari bilangan real dan I adalah matriks identitas yang ordonya 2 * 2, maka yang ditanyakan pada soal adalah nilai x ditambah ySelanjutnya kita akan subtitusikan matriks A dan matriks identitas nya ke dalam persamaan ini persamaannya adalah a. Kuadrat dikurang x = y matriks A adalah 3 - 12 - 5 lalu dikuadratkan dikurang X matriks A nya adalah 3 - 12 - 5 = matriks c nya dikalikan dengan matriks identitas yaitu 1001 tahun untuk menyelesaikan persamaan ini kita Uraikan menjadi3 - 12 - 5 dikalikan 3 - 12 - 5 kurang nah ini kita kembali lagi ke sifat dari Markus ini maka jika ditulis menjadi 3 X min x 2 x min 5 x lalu = ini juga kita akan menggunakan sifat matriks ini maka jika ditulis menjadi y 00 yNah selanjutnya kita akan mengalikan matriks ini dulu setelah itu nanti kita akan kurangi dengan matriks ini dan = dengan matriks ini perlu diingat kembali untuk matriks yang kuadrat Seperti ini cara penyelesaian itu kita Uraikan menjadi Misal a dikali seperti itu sehingga kita memiliki persamaan y menjadi 3 - 12 - 5 dikalikan dengan 3 - 2 - 5 lalu dikurangkan dengan 3 x min x 2 x min 5 x = y 00 y nah lalu kita akan mengalikan matriks ini terlebih dahulu selanjutnya lalu kita akan kurangi untuk menyelesaimatriks seperti ini kita kalikan baris dengan kolom yang untuk mendapatkan baris barunya nah dapat dituliskan seperti ini untuk mendapatkan baris 1 kolom 1 kita kalikan dari 1 dengan kolom 1 jadi penulisannya 3 * 3 adalah 9 plus minus 1 x 2 adalah minus 2 untuk mendapatkan baris 1 kolom 2 kita kalikan baris satu dengan kolom 2 sehingga jika dituliskan 3 x min 1 adalah minus 3 ditambah minus 1 x minus 5 minus ketemu minus menjadi positif 1 * 5 adalah 5 lalu untuk mendapatkan baris 2 kolom 1 kita kalikan baris 2 dengan kolom 1 jika dituliskan 2 * 3 adalah 6 plus minus 5 x 2 adalah minus 10 hal untuk mendapatkan baris 2 kolom 2 kita kalikan baris 2 ini dengan kolom 2 sehingga jika didapatkan adalah 2 x minus 1 adalah minus 2 ditambah minus 5 x minus 5 adalah 25 lalu dikurangi dengan 3 x min x 2 x min 5 = y 00 y dari sini kita akan Sederhanakan terlebih dahulu menjadi ditambah minus 2 adalah 7 - 3 + 5 adalah 26 plus minus 10 adalah minus 4 minus 2 + 25 adalah 23 lalu dikurangi dengan matriks 3 x min x 2 x minus 5 x = y 00 y untuk pengurangan atau penjumlahan matriks cara penyelesaiannya adalah kita hanya melihat baris dan kolom yang sama ini ini akan dikurangi dengan ini jika kita Tuliskan adalah seperti ini 7 dikurang 3x nah ini untuk dari 1 1 hal untuk baris 1 kolom 2 berarti 2 dikurang minus X lalu untuk baris 2 kolom 1 - 4 dikurang 2 x lalu untuk baris 2 kolom 2 adalah 23 dikurang minus 5 x hasil matriks pengurangan nya lalu = y 00 y dari persamaan matriks ini kita punya persamaan-persamaan yang pertama 7 dikurang 3 x = y Lalu ada 2 + x = 0 Lalu ada negatif 4 dikurang 2 x = 0 Lalu ada 23 + 5 x = y yang pertama kita akan mencari nilai x dari persamaan yang maka didapatkan adalah x = minus 2 lalu X ini kita akan subtitusikan kebersamaan ini ataupun ini kita akan mensubstitusikan persamaan yang ini maka didapatkan lah 7 dikurang 3 x minus 2 = y maka y = 7 - 3 - 2 menjadi positif 6 y = 13 yang ditanyakan pada soal adalah x + y maka dapat simpulkan x + y = negatif 2 + 13 = 11, maka jawabannya adalah D sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul – Halo guys, apa kabarnya? Tetap semangat belajar dan tetap sehat. Pada kesempatan kali ini, rumushitung akan membahas materi mengenai persamaan matriks. Sebelumnya, kita sudah mempelajari operasi pada matriks, bagi kalian yang belum mempelajarinya bisa klik disini. Apa yang dimaksud dengan matriks? Seperti yang sudah kita pelajari sebelumnya bahwa matriks adalah kumpulan bilangan yang disusun berdasarkan baris dan kolom tertentu. Dalam matriks, terdapat baris dan kolom yang memiliki ordo. Misalnya, matriks berordo 2 x 3 maka matriks tersebut memiliki 2 baris dan 3 kolom. Lebih jelas lagi bisa klik disini. Persamaan Matriks Dari persamaan matriks di atas akan menghasilkan bilangan sesuai baris dan kolom dengan salah satunya memiliki variabel yang akan dicari. Jadi, hasil dari persamaan di atas adalah a = p, b = q, c = r, d = s, e = t, f = u, g = v, h = w, i = x. Lebih jelasnya perhatikan contoh di bawah Penyelesaian Sesuaikan baris dan kolom pada variabel yang dicari, x + 1 = 5x = 5 – 1x = 44 = zz = 42y = 8y = 8 / 2y = 4 x + y + z = 4 + 4 + 4 = 12 Jadi, x + y + z = 12 Tambahan untuk persamaan matriks, yaitu transpose matriks. Transpose matriks adalah matriks dari pertukaran tempat pada baris dan kolom yang membentuk matriks baru. Lambang untuk transpose matriks diberi tanda petik A’ atau pangkat huruf “t” At. Kesimpulannya, bahwa pada baris dan kolom saling bertukar, untuk baris bertukar dengan kolom atau sebaliknya. Soal – Soal Persamaan Matriks 1. Diketahui persamaan matriks sebagai berikut Tentukan x, y, dan z ! Penyelesaian 6 + 2y = 122y = 12 – 62y = 6y = 6 / 2y = 3x – 5 + 5y = 20x – 5 + 53 = 20x – 5 + 15 = 20x + 10 = 20x = 20 – 10x = 10z + 7 = 8z = 8 – 7z = 1 Jadi hasilnya adalah x = 10, y = 3, dan z = 1 2. Diketahui persamaan matriks A, B, dan C. Jika persamaan matriks A . C = Bt, tentukan berapa x ! Penyelesaian Untuk A . C = Bt x + 3 = 5x = 5 – 3x = 2 Atau 3x + 1 = 73x = 7 – 13x = 6x = 2 Jadi, x = 2 3. Diketahui persamaan matriks sebagai berikut Jika A – B = C + D, tentukan x, y, dan z ! Penyelesaian 2 = z – 32 + 3 = zz = 5-x-1 = -44 – 1 = x3 = xx = 36 = 3y6 / 3 = y2 = yy = 2 Jadi, x = 3, y = 2, dan z = 5 4. Diketahui persamaan matriks sebagai berikut Jika bentuk persamaannya Tentukan nilai x + y ! Penyelesaian x – 5 = 5x = 5 + 5x = 106 + y = 7y = 7 – 6y = 1 Jadi, x + y = 10 + 1 = 11 5. Tentukan persamaan matriks dari Nilai 3x+2y ! Penyelesaian 9 – y = 49 – 4 = yy = 5y – x -1 = 15 – x – 1 = 15 – 1 – 1 = xx = 3 Jadi, 3x + 2y = 33+ 25 = 9 + 10 = 19 Demikian materi hari ini kita akhiri, semoga bermanfaat. Sekian terima kasih. Baca juga Persamaan Logaritma Pengertian dan Bentuk Pertidaksamaan Logaritma Pengertian dan Bentuk Rumus Pertidaksamaan Matematika

diketahui persamaan matriks 1 3 2 5